Characterizing and Modeling Synchronous Clock-Glitch Fault Injection

Amélie Marotta¹

amelie.marotta@inria.fr

Ronan Lashermes¹, Guillaume Bouffard², Olivier Sentieys¹, Rachid Dafali³

¹University of Rennes, Inria
²National Cybersecurity Agency of France (ANSSI)
³DGA-MI

Introduction

- \rightarrow Electromagnetic fault injection (EMFI) has many effects of a circuit.
- \rightarrow Fault model: explanation of a fault at different abstraction levels.

level	manifestation
microarchitectural	impact on the microarchitecture
	\hookrightarrow instruction skip
register-transfer	logic signal alteration
	\hookrightarrow bitflip propagating through a circuit
physical	interaction between fault injection and
	transistors/logic gates, analog signals
	$\hookrightarrow DFF \text{ sampling an incorrect value}$

Overview

1. Introduction

- 2. Electromagnetic Fault Injection
- 3. Experimental set-up
 - \rightarrow TRAITOR
 - ightarrow Device Under Test
- 4. Hypotheses
- 5. Conclusion

EMFI, physical effects

Underpowered circuit: Timing Fault Model

Figure: Timing Fault Model [3] on a simple circuit

Voltage bounces and drops: Sampling Fault Model

Figure: Sampling Fault Model [4] on a simple circuit

Modified clock cycle

Figure: Synchronous Clock Glitch (SCG) impact on a simple circuit [1]× Timing Fault Model× Sampling Fault Model

Our goals

Faulted execution:

 \Rightarrow provide a physical fault model that explain how the SCG leads to faults.

- $\hookrightarrow \mathsf{physical} \ \mathsf{experimentations}$
- $\hookrightarrow \mathsf{simulations}$
- \Rightarrow glitch carried out by the clock
 - $\hookrightarrow \mathsf{DFFs} \text{ impacted}$

Overview

1. Introduction

- 2. Electromagnetic Fault Injection
- 3. Experimental set-up
 - \rightarrow TRAITOR
 - ightarrow Device Under Test

4. Hypotheses

5. Conclusion

TRAITOR: generation of the CSCG

Figure: The Controlled Synchronous Clock Glitch (CSCG) is generated using two out-of-phase clocks, clk1 and clk2 [2]. The TRAITOR user has the capability to replace the regular clock signal with CSCG at their discretion.

TRAITOR

Figure: 3 examples of clock signals generated by TRAITOR, implemented on a Artix-7 FPGA, illustrating its possibilities.

Device Under Test (DUT)

Figure: DUT and TRAITOR on an Artix-7 FPGA.

Logical and physical, in-order and randomized

Figure: The two logical-to-hardware mappings: mapping 1 is in-order and mapping 2 is randomized.

Overview

1. Introduction

- 2. Electromagnetic Fault Injection
- 3. Experimental set-up
 - \rightarrow TRAITOR
 - ightarrow Device Under Test

4. Hypotheses

5. Conclusion

Hypotheses

Hypothesis 1 (Energy Threshold) For a DFF to correctly sample a clock's rising edge, the clock signal must meet a certain energy threshold, combination of voltage amplitude and width thresholds.

Behaviour of 3 selected DFF

Figure: Transitions phases of three target physical DFFs chosen since they exhibit different characteristics.

Simulation set-up

- $\rightarrow\,$ SPICE simulation
- \rightarrow 28nm DFF
 - $\,\hookrightarrow\,$ not the exact same as the Artix-7 DFF
 - $\,\hookrightarrow\,$ designed for similar technology so should behave the same way
- $\rightarrow\,$ focus on the state change of the first DFF

Goal: estimate the impact of the voltage and width of the CSCG

Simulation results

Figure: Simulated sampling results: for a given glitch with voltage amplitude and width above this curve, sampling is correct.

Hypotheses

Hypothesis 2 (Fault Sensitivity Dependency on Intrinsic Properties) The fault sensitivity of a DFF depends on its intrinsic properties, such as clock routing up to the DFF among others.

 \longrightarrow Only clock routing?

 \hookrightarrow same DUT on two Artix-7 FPGAs

Only clock routing?

Slice 1 -	23	23	23	23	23	23	23	23
Slice 2 -	23	23	23	23	22	22	22	22
Slice 3 -	23	23	23	23	23	23	23	23
Slice 4 -	23	23	23	23	23	23	23	23
Slice 5 -	22	22	22	22	22	22	22	22
Slice 6 -	22	22	22	22	23	23	23	23
Slice 7 -	23	23	23	23	23	23	23	23
Slice 8 -	23	23	23	23	22	22	22	22
	_							

Slice 1 -	22	22	22	22	21	21	21	21
Slice 2 -	21	21	21	21	21	21	21	21
Slice 3 -	22	22	22	22	22	22	22	22
Slice 4 -	22	22	22	22	21	21	21	21
Slice 5 -	21	21	21	21	22	22	22	22
Slice 6 -	22	22	22	22	22	22	22	22
Slice 7 -	21	21	21	21	21	21	21	21
Slice 8 -	21	21	21	21	21	21	21	21

(a) Color coded fault sensitivities of the first 64 registers on mapping 1 on FPGA 1.

(b) Color coded fault sensitivities of the first 64 registers on mapping 1 on FPGA 2.

Figure: Comparing fault sensitivities between physical DFFs on two Artix-7 FPGAs.

Hypotheses

Hypothesis 2 (Fault Sensitivity Dependency on Intrinsic Properties) The fault sensitivity of a DFF depends on its intrinsic properties, such as process variability and clock routing up to the DFF among others.

Only intrinsic properties?

Slice 1 -	23	23	23	23	23	23	23	23
Slice 2 -	23	23	23	23	22	22	22	22
Slice 3 -	23	23	23	23	23	23	23	23
Slice 4 -	23	23	23	23	23	23	23	23
Slice 5 -	22	22	22	22	22	22	22	22
Slice 6 -	22	22	22	22	23	23	23	23
Slice 7 -	23	23	23	23	23	23	23	23
Slice 8 -	23	23	23	23	22	22	22	22

Slice 1 -	22	24	22	23	23	23	23	23
Slice 2 -	23	23	24	22	23	23	22	23
Slice 3 -	23	23	23	22	23	22	22	22
Slice 4 -	23	22	23	22	23	23	22	22
Slice 5 -	22	22	23	23	22	22	22	22
Slice 6 -	24	22	22	22	22	23	22	24
Slice 7 -	22	22	22	24	22	23	24	23
Slice 8 -	23	22	22	22	22	22	22	22
		-						

(a) Color coded fault sensitivities of the first 64 registers on mapping 1 *in-order* on FPGA 1.

(b) Color coded fault sensitivities of the first 64 registers on mapping 2 *randomized* on FPGA 1.

Figure: Comparing fault sensitivities between physical DFFs for different mappings.

Hypotheses

Hypothesis 3 (Fault Sensitivity Dependency on Extrinsic Properties) The fault sensitivity of a DFF may also be affected by extrinsic factors, such as the activity in neighboring wires (including routing between DFFs and the routing of the clock tree).

Hypotheses

Hypothesis 3 (Fault Sensitivity Dependency on Extrinsic Properties) The fault sensitivity of a DFF may also be affected by extrinsic factors, such as the activity in neighboring wires (including routing between DFFs and the routing of the clock tree).

 \longrightarrow Impact of data wires

 \hookrightarrow same route, different implementation

Impact of data wires

Figure: Abstract representation of the DUT placement on a Artix-7 FPGA, with route variations between two DFFs.

Impact of data wires

Slice 1 -	22	23	23	22	22	23	23	22
Slice 2 -	22	23	22	22	23	23	23	22
Slice 3 -	22	23	22	22	22	23	23	22
Slice 4 -	23	22	23	23	22	23	22	22
Slice 5 -	22	22	23	23	22	22	22	23
Slice 6 -	22	22	22	24	22	22	22	23
Slice 7 -	24	22	23	22	22	22	23	23
Slice 8 -	22	23	22	23	22	22	22	22

(a) Color coded fault sensitivities of the first 64 registers on mapping 1 *in-order* on FPGA 1. (b) Color-coded fault sensitivities of the first 64 registers on mapping 1 *in-order* with different data routing on FPGA 1

Figure: Comparing fault sensitivities between physical DFFs for different data routing.

Hypotheses

Hypothesis 3 (Fault Sensitivity Dependency on Extrinsic Properties) The fault sensitivity of a DFF may also be affected by extrinsic factors, such as the activity in neighboring wires (including routing between DFFs and the routing of the clock tree).

 \longrightarrow Impact of clock wires

 \hookrightarrow forced adjacent clock paths

Impact of clock wires

Figure: Abstract representation of the DUT placement on a Artix-7 FPGA, with clock routes forced to be apart

Impact of clock wires

Figure: Abstract representation of the DUT placement on a Artix-7 FPGA, with clock routes forced to be parallel

Impact of clock wires

Slice 1 -	23	23	23	23	23	23	23	23
Slice 2 -	23	23	23	23	22	22	22	22
Slice 3 -	23	23	23	23	23	23	23	23
Slice 4 -	23	23	23	23	23	23	23	23
Slice 5 -	22	22	22	22	22	22	22	22
Slice 6 -	22	22	22	22	23	23	23	23
Slice 7 -	23	23	23	23	23	23	23	23
Slice 8 -	23	23	23	23	22	22	22	22
								_

Slice 1 -	21	21	21	21	21	21	21	21
Slice 2 -	20	20	20	20	20	20	20	20
Slice 3 -	20	20	20	20	21	21	21	21
Slice 4 -	21	21	21	21	21	21	21	21
Slice 5 -	20	20	20	20	20	20	20	20
Slice 6 -	20	20	20	20	21	21	21	21
Slice 7 -	20	20	20	20	20	20	20	20
Slice 8 -	20	20	20	20	20	20	20	20

(a) Color coded fault sensitivities of the first 64 registers on mapping 1 *in-order* on FPGA 1.

(b) Color-coded fault sensitivities of the first 64 registers on mapping 1 *in-order* with a forced adjacent path for the clock on FPGA 1

Figure: Comparing fault sensitivities between physical DFFs for different clock routing.

Conclusion

\implies the Energy-Threshold Fault Model

- For a DFF to correctly sample a clock's rising edge, the clock signal must meet a certain energy threshold
- 2) The threshold of a DFF varies based on intrinsic properties (clock routing, process variability)
- 3) The threshold of a DFF can be influenced by extrinsic properties (acitivity of neighbouring wires) due to cross-talk

 \implies Future work: recreate the synchronous clock glitch with EMFI and verify if the Energy-threshold Fault Model requires adjusments

Bibliography

Ludovic Claudepierre and Philippe Besnier.

Microcontroller Sensitivity to Fault-Injection Induced by Near-Field Electromagnetic Interference.

In APEMC - Asia-Pacific International Symposium on Electromagnetic Compatibility, pages 1–4, Sapporo, Japan, June 2019.

 Ludovic Claudepierre, Pierre-Yves Péneau, Damien Hardy, and Erven Rohou. TRAITOR: A Low-Cost Evaluation Platform for Multifault Injection.
In Weizhi Meng and Li Li, editors, ASSS'21: Proceedings of the 2021 International Symposium on Advanced Security on Software and Systems, Virtual Event, Hong Kong, pages 51–56. ACM, June 2021.

Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria. Electromagnetic Transient Faults Injection on a Hardware and a Software Implementations of AES.

In Guido Bertoni and Benedikt Gierlichs, editors, *Workshop on Fault Diagnosis and Tolerance in Cryptography, Leuven, Belgium*, pages 7–15. IEEE Computer Society, September 2012.

 Mathieu Dumont, Mathieu Lisart, and Philippe Maurine.
Modeling and Simulating Electromagnetic Fault Injection.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 40(4):680–693, 2021.