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Introduction

! Electromagnetic fault injection (EMFI) has many effects of a circuit.

! Fault model: explanation of a fault at different abstraction levels.

level manifestation
microarchitectural impact on the microarchitecture

,! instruction skip

register-transfer logic signal alteration
,! bitflip propagating through a circuit

physical interaction between fault injection and
transistors/logic gates, analog signals
,! DFF sampling an incorrect value
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EMFI, physical effects

EMFI has an
impact on...

...power and ground signals ...clock signals

...something else?

COSADE24 4 / 31



Underpowered circuit: Timing Fault Model

Normal execution:

LOGIC
D0 Q0

D1 Q1

clk
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Faulted execution:

LOGIC
D0 Q0

D1 Q1

clk
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E
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?

Electromagnetic Transient Faults Injection on a hardware and a software implementation of AES.
Figure: Timing Fault Model [3] on a simple circuit

Timing Fault Model
Sampling Fault Model

,! glitch carried out by the clock
) DFFs impacted
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Voltage bounces and drops: Sampling Fault Model

Normal execution:

LOGIC
D0 Q0

D1 Q1

clk

tsetup thold
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Faulted execution:

LOGIC
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Electromagnetic Transient Faults Injection on a hardware and a software implementation of AES.
Figure: Sampling Fault Model [4] on a simple circuit

Timing Fault Model
Sampling Fault Model

,! glitch carried out by the clock
) DFFs impacted
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Modified clock cycle

Normal execution:

LOGIC
D0 Q0

D1 Q1

clk

tsetup thold

clk

D1

Q1

Faulted execution:

LOGIC
D0 Q0

D1 Q1

clk
E

clk

D1

Q1
?

Electromagnetic Transient Faults Injection on a hardware and a software implementation of AES.
Figure: Synchronous Clock Glitch (SCG) impact on a simple circuit [1]

⇥ Timing Fault Model
Sampling Fault Model

⇥ Sampling Fault Model
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Our goals

Faulted execution:

LOGIC
D0 Q0

D1 Q1

clk
E

clk

D1

Q1
?

Electromagnetic Transient Faults Injection on a hardware and a software implementation of AES.) provide a physical fault model that explain how the SCG leads to
faults.
,! physical experimentations
,! simulations

) glitch carried out by the clock
,! DFFs impacted
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TRAITOR: generation of the CSCG

clk1

clk2

phase shift

amplitudeCSCG

CSCG = (clk1 � clk2) · clk1

Figure: The Controlled Synchronous Clock Glitch (CSCG) is generated using two

out-of-phase clocks, clk1 and clk2 [2]. The TRAITOR user has the capability to

replace the regular clock signal with CSCG at their discretion.
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TRAITOR

TRAITOR TARGET

clk glitched

trigger

TARGET
trigger

TRAITOR 1

2

3

clk glitched

delay

amp. c

amp. b

amp. a

Figure: 3 examples of clock signals generated by TRAITOR, implemented on a

Artix-7 FPGA, illustrating its possibilities.
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Device Under Test (DUT)

target registers

control registers

TRAITOR

clk glitched

clk ok

010101

010101

010101

010101

010101

010101

010111

010101

010101

010101

fault!

Figure: DUT and TRAITOR on an Artix-7 FPGA.
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Logical and physical, in-order and randomized

mapping 1

in-order

mapping 2

randomized

logical DFFs physical DFFs

Figure: The two logical-to-hardware mappings: mapping 1 is in-order and

mapping 2 is randomized.
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Hypotheses

Hypothesis 1 (Energy Threshold) For a DFF to correctly sample a

clock’s rising edge, the clock signal must meet a certain energy thresh-

old, combination of voltage amplitude and width thresholds.

amplitude

clk

register
state

0

always
faulted

always
unfaulted

sometimes
unfaulted
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Behaviour of 3 selected DFF

•

fault sensitivity

Figure: Transitions phases of three target physical DFFs chosen since they exhibit

different characteristics.
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Simulation set-up

clk glitched

! SPICE simulation
! 28nm DFF

,! not the exact same as the Artix-7 DFF
,! designed for similar technology so should behave the same way

! focus on the state change of the first DFF

Goal: estimate the impact of the voltage and width of the CSCG
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Simulation results

Sampling OK

Incorrect sampling

Figure: Simulated sampling results: for a given glitch with voltage amplitude and

width above this curve, sampling is correct.
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Hypotheses

Hypothesis 2 (Fault Sensitivity Dependency on Intrinsic Properties)
The fault sensitivity of a DFF depends on its intrinsic properties, such

as clock routing up to the DFF among others.

�! Only clock routing?
,! same DUT on two Artix-7 FPGAs
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Only clock routing?

(a) Color coded fault sensitivities of
the first 64 registers on mapping 1 on
FPGA 1.

(b) Color coded fault sensitivities of the
first 64 registers on mapping 1 on
FPGA 2.

Figure: Comparing fault sensitivities between physical DFFs on two Artix-7

FPGAs.
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Hypotheses

Hypothesis 2 (Fault Sensitivity Dependency on Intrinsic Properties)
The fault sensitivity of a DFF depends on its intrinsic properties, such

as process variability and clock routing up to the DFF among others.

�! Only intrinsic properties?
,! same FPGA, different mappings
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Only intrinsic properties?

(a) Color coded fault sensitivities of
the first 64 registers on mapping 1
in-order on FPGA 1.

(b) Color coded fault sensitivities of the
first 64 registers on mapping 2
randomized on FPGA 1.

Figure: Comparing fault sensitivities between physical DFFs for different

mappings.
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Hypotheses

Hypothesis 3 (Fault Sensitivity Dependency on Extrinsic Properties)
The fault sensitivity of a DFF may also be affected by extrinsic factors,

such as the activity in neighboring wires (including routing between

DFFs and the routing of the clock tree).

�! Impact of data wires
,! same route, different implementation
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Impact of data wires

target DFFs

original route

different route

clock signal source

clk ok

clk glitched

Artix-7

Figure: Abstract representation of the DUT placement on a Artix-7 FPGA, with

route variations between two DFFs.
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Impact of data wires

(a) Color coded fault sensitivities of
the first 64 registers on mapping 1
in-order on FPGA 1.

(b) Color-coded fault sensitivities of the
first 64 registers on mapping 1 in-order
with different data routing on FPGA 1

Figure: Comparing fault sensitivities between physical DFFs for different data

routing.

COSADE24 25 / 31



Hypotheses

Hypothesis 3 (Fault Sensitivity Dependency on Extrinsic Properties)
The fault sensitivity of a DFF may also be affected by extrinsic factors,

such as the activity in neighboring wires (including routing between

DFFs and the routing of the clock tree).

�! Impact of clock wires
,! forced adjacent clock paths
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Impact of clock wires

target DFFs control DFFs

clock signal source

clk ok

clk glitched

Artix-7

Figure: Abstract representation of the DUT placement on a Artix-7 FPGA, with

clock routes forced to be apart
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Impact of clock wires

target DFFs control DFFs

clock signal source

clk ok

clk glitched

Artix-7

Figure: Abstract representation of the DUT placement on a Artix-7 FPGA, with

clock routes forced to be parallel
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Impact of clock wires

(a) Color coded fault sensitivities of
the first 64 registers on mapping 1
in-order on FPGA 1.

(b) Color-coded fault sensitivities of the
first 64 registers on mapping 1 in-order
with a forced adjacent path for the clock
on FPGA 1

Figure: Comparing fault sensitivities between physical DFFs for different clock

routing.
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Conclusion

=) the Energy-Threshold Fault Model

1 For a DFF to correctly sample a clock’s rising edge, the clock signal
must meet a certain energy threshold

2 The threshold of a DFF varies based on intrinsic properties (clock
routing, process variability)

3 The threshold of a DFF can be influenced by extrinsic properties
(acitivity of neighbouring wires) due to cross-talk

=) Future work: recreate the synchronous clock glitch with EMFI and
verify if the Energy-threshold Fault Model requires adjusments
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